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ABSTRACT 
 
The zero truncated Poisson distribution is an important and 
appropriate model for many applications. Here we give and 
assess several tests of fit for this model. 
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1. INTRODUCTION 

 
A basic discrete probability distribution often studied in introductory statistics courses is 

the Poisson distribution. Typically sufficient conditions are given for the model to apply. These 
conditions may occur, except that the recording mechanism is not activated unless at least one 
event occurs. The corresponding zero truncated distribution has probability function, for λ > 0,  
 

P(X = x) = λx/{(eλ – 1)x!}, x = 1, 2, 3, … . 
 

There have been many instances of this distribution in the literature, and we now cite 
four of these. 
• Simonoff (2003, p.100) gave counts of the pairs of running shoes owned by 60 members of 

an athletics club. For 1, 2, 3, 4 and 5 pairs the counts were 18, 18, 12, 7 and 5. 
• Finney and Varley (1955) gave counts of flower heads with 1, 2, … , 9 fly eggs. The 

corresponding counts were 22, 18, 18, 11, 9, 6, 3, 0 and 1. 
• Coleman and James (1961) gave counts of sizes of groups of people in public places on a 

Spring afternoon in Portland, Oregon. For group sizes 1, 2, 3, 4, 5, and 6 the counts were 
1486, 694, 195, 37, 10 and 1. 

• Matthews and Appleton (1993) gave counts of sites with 1, 2, 3, 4 and 5 particles from 
immunogold assay data. The counts were 122, 50, 18, 4 and 4. 

In section 4 below we will test the fit of the zero truncated Poisson distribution for these 
four sets of data. Section 2 following gives some definitions while section 3 gives a power 
comparison of some tests of fit for the zero truncated Poisson distribution. Section 5 considers 
an ecological application. 
 
 

2. DEFINITIONS 
 

The first test statistics we consider are components of smooth test statistics. To calculate 
these statistics we need to find the moments about the mean, µr, of the zero truncated Poisson 
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distribution with parameter λ. We first need the moments about the origin, 

 

γr
'  say, of the usual 

untruncated Poisson distribution. These can be derived from 
 

 

γr+1
'  = 

 

λ  
r
i

 

 
 

 

 
 

i=0

r

∑  γr
'  for r = 0, 1, 2… , 

 

with 

 

γ0
'  = 1. This result follows by substituting 

 

γr
'  = 

 

  xre−λ
x=1

∞∑ λx / x!, exchanging the order of 
the summations, and simplifying. The moments about the origin of the zero truncated Poisson, 

 

µr
' , are as for the untruncated Poisson distribution, but divided by 

 

1− e−λ( ): 
 

 

µr
'  = 

 

γr
' /(1 – e-λ) for r = 1, 2, 3, … . 

 
Now the moments about the mean, µr, can be derived using the well-known result that if µ = 

 

µ1
'  

= λ/(1 – e-λ) and 

 

µ0
'  = 1, then for r = 2, 3, … , 

 

µr = 

 

 
r
i

 

 
 

 

 
 µr−i

' −µ( )i

i=0

r

∑ . 

 
For a random sample X1, X2, … , Xn the components of the smooth tests of goodness of 

fit for the zero truncated Poisson distribution are, for r = 1, 2, 3, … , 
 

 

ˆ U r  = 

 

gr X j; ˆ λ ( )/ n
j=1

n

∑ . 

 
Here 

 

ˆ λ  is the maximum likelihood estimator (MLE), which is the same as the method of 
moments estimator (MME) of λ, satisfying 
 

 

X  = 

 

ˆ λ / 1− e− ˆ λ  
 
  

 
 . 

 
Moreover {gr(x; λ): r > 0} is the set of polynomials orthonormal on the zero truncated Poisson, 
and hence satisfying 
 

 

gi x( )g j x( )λx / eλ −1( )x!{ }
x=1

∞

∑  = 0 for i ≠ j and = 1 for i = j. 

 
The first four orthonormal polynomials are defined as follows: 
 

g0(x) = 1 for all x, g1(x) = (x – µ)/

 

µ2 , 

g2(x) = {

 

x − µ( )2 − µ3 x − µ( )/µ2 − µ2 }/

 

µ4 − µ3
2 /µ2 − µ2

2  and 

g3(x) = 

 

x − µ( )3 − a x − µ( )2 − b x − µ( )− c

µ6 − 2aµ5 + a2 − 2b( )µ4 + 2 ab − c( )µ3 + b2 + 2ac( )µ2 + c2
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in which  
 

a =     µ 5 − µ 3µ4 / µ2 − µ2µ 3( )/ d , b =     µ 4
2 / µ2 − µ 2µ4 − µ3µ5 / µ2 + µ 3

2( )/ d , 

c = 

 

2µ3µ4 − µ3
3 /µ2 − µ2µ5( )/d  and d =   µ4 − µ3

2 / µ2 − µ2
2 . 

 
Further polynomials may be given using the recurrence relations of Emerson (1968). 

The first non-zero component of the omnibus smooth test for the untruncated Poisson 
distribution - Fisher’s Index of Dispersion - generally had good power in the study of Best and 
Rayner (1999), except when the alternatives had approximately equal mean and variance. In 
such cases good power was obtained by the Anderson-Darling test. For the zero truncated 
Poisson this can be based on the test statistic A2, given by 
 

A2 = 

 

Z j
2 ˆ λ j / hj 1− hj( ) e

ˆ λ −1 
 
  

 
 j! 

 
 

 
 
 

j=1

∞

∑  

 

where Zj = 

 

Ox − n ˆ λ x / e
ˆ λ −1 

 
  

 
 x! 

 
 

 
 
 

 
 
 

 
 
 

x=1

j∑  and hj = 

 

ˆ λ x / e
ˆ λ −1 

 
  

 
 x! 

 
 

 
 
 x=1

j∑  in which Ox is the 

number of observations equal to x. Summation is halted when 

 

ˆ λ x / e
ˆ λ −1 

 
  

 
 x! 

 
 

 
 
 

 < 10-3/n and Ox = 

0. 
Unlike the 

 

ˆ U r
2, the Anderson-Darling test does not produce biased tests for some 

alternatives. We suggest A2 (with summation beginning at one rather than zero) be also used for 
formal goodness of fit testing of the zero truncated Poisson distribution while 

 

ˆ U 2
2 be used in the 

spirit of exploratory data analysis to examine whether or not the data are under, equally or over-
dispersed. Rao and Chakravarti (1956) gave a dispersion statistic 
 

D = 

 

Xi − X ( )2

i=1

n

∑ / X 1+ ˆ λ − X ( ){ } 

 
for the zero truncated distribution, and, in fact, 

 

ˆ U 2  = (D – n)/√(2n). 
In the next section we give powers of the tests based on 

 

ˆ U 2
2, 

 

ˆ U 3
2 and A2. These powers 

are compared with powers of a Pearson’s X2 test and with a probability generating function 
based test, denoted subsequently by PGF. Both tests are described in Epps (1995), and the 
powers there are reproduced here.  

As an alternative to tests based on 

 

ˆ U 2
2, 

 

ˆ U 3
2 and A2, we consider tests based on Pearson’s 

 

XCLE1+
2 , and its second and third order components 

 

ˆ V 2
2  and 

 

ˆ V 3
2 . For a complete background and 

discussion see Best and Rayner (2003, 2005a and 2005b). It is sufficient to note that there are 
various rules for choosing the number of classes for the Chernoff-Lehmann 

 

XCL
2  test. Here we 

take this number, k say, to be as large as possible such that each class has expectation at least 
unity and call the test statistic 

 

XCLE1+
2 . This may involve grouping from above as well as 

grouping from below and agrees with the suggestion of Douglas (1994). As in Best and Rayner 
(2005a and 2005b) the test statistic 

 

XCLE1+
2  has null distribution well approximated by the 

 

χk−2
2  

distribution. The 

 

XCLE1+
2  test statistic can be partitioned into useful components. For some 

alternatives some of these components have much greater power than X2 itself. Put 
 



Zero Truncated Poisson GOF 
 
 

 
 

December 5, 2005 

4 

µ = 

 

jp j
j=1

k

∑  and µr = 

 

j − µ( )r p j
j=1

k

∑  for r = 2, 3, ... , 

 

where now pj = 

 

ˆ λ j / e
ˆ λ −1 

 
  

 
 j! 

 
 

 
 
 

 for j = 1, … , k – 1 and pk = 1 – p1 – … – pk-1. Using these 

multinomial central moments we may calculate {gr(j; λ)} defined as previously, and hence 
define 
 

 

ˆ V r  = 

 

Ojgr j; ˆ λ ( )
j=1

k

∑ / n , r = 1, … , k. 

 
Then, as in Lancaster (1953), 
 

 

XCL
2  = 

 

ˆ V 1
2 +  ... + ˆ V k

2. 
 
This is a Chernoff-Lehmann test statistic because the estimation of λ is achieved by using the 
uncategorized MLE. Notice that estimation of λ by ˆ λ  implies that 

 

ˆ V 1 will be close to zero if not 
much pooling is done. Unlike 

 

ˆ V 2, … , 

 

ˆ V k , 

 

ˆ V 1 will not have an asymptotic standard normal 
distribution. Also notice that if the bound on the class expectation is successively reduced, then 
k becomes larger and larger, and the 

 

ˆ V r  will approach the corresponding 

 

ˆ U r . 
 
 

3. POWERS 
 

In the power study reported here random deviates for the geometric (G+) alternatives 
were found using the IMSL(1995) routine RNGEO and similarly random deviates for the 
logarithmic series (L) distribution were found using the routine RNLGR from the same source. 
Random shifted binomial deviates (B+) were found by adding unity to values returned by the 
routine RNBIN and zero truncated Poissons (P+) were found by using the routine RNPOI and 
discarding zeroes. Random zeta deviates (Z) were found using an algorithm in Devroye (1986, 
p.551). 
 
 
Table 1. Powers of some tests for the zero truncated Poisson distribution with n = 50 and α = 
0.05 (10,000 simulations of the outer loop, 1,000 for the inner loop). 

Alternative 

 

ˆ U 2
2 

 

ˆ U 3
2 A2 PGF X2 

P+(3) 0.054 0.050 0.054 0.059 0.057 
G+(0.4) 0.885 0.566 0.807 0.84 0.64 
G+(0.33) 0.969 0.714 0.940 0.93 0.84 

B+(10, 0.2) 0.492 0.075 0.444 0.53 - 
L(0.3) 0.237 0.176 0.193 0.22 0.14 
L(0.5) 0.552 0.364 0.447 0.52 0.28 
L(0.7) 0.913 0.680 0.859 0.91 0.73 
Z(2) 0.786 0.674 0.747 0.76 - 

 
 

The parametric bootstrap powers in Table 1 are based on 10,000 simulations of a 
parametric bootstrap p-value which used 1,000 simulations. G

 

Ý Ý u rtler and Henze (2000) give 
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details of the parametric bootstrap in the goodness of fit context. The Table 1 powers show the 
smooth dispersion test based on 

 

ˆ U 2
2 is usually best for the alternatives considered. The PGF test 

is almost as good, with the test based on A2 almost as good as the PGF test. The tests based on 

 

ˆ U 3
2 and X2 fared worst for these alternatives. Epps (1995) notes that the PGF test, like those 

based on the 

 

ˆ U r
2, 

 

ˆ V r
2  and X2, can have poor power for some alternatives. 

The powers in Table 2 are intended to be directly comparable with those in Table 1. 
They are based on 10,000 simulations of samples of size n and use χ2 critical values. As in Best 
and Rayner (2005a) the minimum number of classes for 

 

XCLE1+
2  and its components was taken 

to be 5 even if this meant some classes had expectation less than 1.0. The powers in Table 2 are 
generally not quite as good as those in Table 1 but nevertheless those for 

 

ˆ V 2
2  and 

 

XCLE1+
2  are 

close enough to those of 

 

ˆ U 2
2 and A2 to suggest they offer an acceptable approach when ease of 

calculation of the p-values is important. 
 
 
Table 2. Powers of some categorised tests for the zero truncated Poisson distribution: 

 

XCLE1+
2  

and its components 

 

ˆ V 2
2  and 

 

ˆ V 3
2 , with n = 50 and α = 0.05  

Alternative 

 

ˆ V 2
2  

 

ˆ V 3
2  

 

XCLE1+
2  

P+(3) 0.052 0.048 0.046 
G+(0.4) 0.753 0.063 0.613 
G+(0.33) 0.915 0.065 0.821 

B+(10, 0.2) 0.550 0.029 0.224 
L(0.3) 0.199 0.114 0.224 
L(0.5) 0.472 0.220 0.484 
L(0.7) 0.823 0.089 0.742 
Z(2) 0.759 0.436 0.772 

 
 

4. EXAMPLES 
 

We now apply the tests based on 

 

ˆ U 2
2, 

 

ˆ V 2
2 , A2 and 

 

XCLE1+
2  to the four data sets given in 

the Introduction. The p-values for 

 

ˆ U 2
2 and A2 are based on 1,000 simulations using the 

parametric bootstrap, while the p-values for 

 

ˆ V 2
2  and 

 

XCLE1+
2  use the appropriate approximating 

χ2 distribution. 
 
Running Shoes Example. We find ˆ λ  = 2.088, 

 

ˆ U 2
2 = 0.128 with p-value 0.73 and A2= 0.124 with 

p-value 0.89. Both tests suggest these data are well described by the zero truncated Poisson 
distribution. This is supported by the tests based on 

 

ˆ V 2
2  and 

 

XCLE1+
2 . The former takes the value 

0.029 with p-value 0.87, while the latter takes the value 3.169 with p-value 0.53. 
 
Flower Heads Example. Finney and Varley (1955), on the basis of a Pearson X2 test, suggest 
these data are consistent with the zero truncated Poisson distribution. We find ˆ λ  = 2.860, 

 

ˆ U 2
2 = 

4.62 with p-value 0.02 and A2= 1.162 with p-value 0.04. Both tests suggest the zero truncated 
Poisson is not a good model. Our approach has identified the data are too dispersed for this 
model to be adequate. We also find 

 

ˆ V 2
2  = 5.712 with p-value 0.02 and 

 

XCLE1+
2  = 6.865 with p-

value 0.23. This is consistent with the conclusion of Finney and Varley (1955), and with the test 
based on 

 

ˆ U 2
2. 
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Public Places Example. The zero truncated Poisson distribution seems to fit these data. We find 
ˆ λ  = 0.8925, 

 

ˆ U 2
2 = 0.773 with p-value 0.40, 

 

ˆ V 2
2  = 0.731 with p-value 0.39, A2= 0.405 with p-

value 0.30 and 

 

XCLE1+
2  = 2.995 with p-value 0.56. 

 
Immunogold Assay Example. Use of A2 alone suggests the zero truncated Poisson distribution 
provides an appropriate model, but 

 

ˆ U 2
2 suggests overdispersion. We find ˆ λ  = 0.9906, 

 

ˆ U 2
2 = 

3.896 with p-value 0.05 and A2= 0.742 with p-value 0.13. We also find 

 

ˆ V 2
2  = 5.301 with p-value 

0.02 and 

 

XCLE1+
2  = 8.875 with p-value 0.03. 

 
 

5. EQUAL CATCHABILITY 
 

To estimate animal abundance ecologists perform mark-recapture studies. In these it is of 
interest to ascertain whether or not animals are caught in a random fashion. The ecological 
literature refers to caught at random or not as testing for equal catchability. 

In a study carried out by Keith and Meslow (1968), snowshoe hares were captured over 
seven days. After a hare was captured it was marked and released. Subsequently the same hare 
may or may not have been recaptured. Those that have been captured on a previous day were 
identified by the marking done on their first day of capture. There were 261 hares caught over 
the seven days. Of these 184 were caught once, 55 were caught twice, 14 were caught three 
times, 4 were caught four times, and 4 were caught five times. 

For these data Krebs (1998, p.52) finds ˆ λ  = 0.7563 and X2 = 7.77 on two degrees of 
freedom with p-value 0.02. From section 3 above we know that X2 is a reasonable omnibus test 
statistic for the zero truncated Poisson but that the dispersion test based on 

 

ˆ U 2
2 is also quite 

powerful. To calculate 

 

ˆ U 2
2 note that the mean and variance of the data are 1.4253 and 0.6300 

respectively. We calculate D = 347.2 and hence 

 

ˆ U 2
2 = (D – 262)2/522 = 14.65. Using the 

 

χ1
2  

approximation to the distribution of 

 

ˆ U 2
2 the p-value is 0.0001, and using the parametric 

bootstrap based on 1,000 simulations a p-value of 0.002 is obtained. The two p-values for 

 

ˆ U 2
2 

are reasonably consistent. Notice that the test based on 

 

ˆ U 2
2 is more critical of the data than that 

based on X2. However, as in the power study above, a moment test such as that based on 

 

ˆ U 2  
may sometimes lack power, and it is advisable to calculate A2 or X2 as well as 

 

ˆ U 2
2. 

While testing for the zero truncated Poisson is appropriate for these snowshoe hare data, 
we suggest that a doubly truncated Poisson distribution may be a more appropriate model if at 
most one capture a day is possible, as at most seven captures are possible over the study. 
Johnson, Kotz and Kemp (1992, p.186) discuss how to estimate λ for a doubly truncated 
Poisson distribution.  
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